
Lemi Orhan Ergin Agile Software Craftsman & Co-Founder, Craftbase

GIT ANTI PATTERNS10
YOU SHOULD BE AWARE OF

LEMi ORHAN ERGiN



LEMi ORHAN ERGiN
agile software craftsman 
co-founder @ craftbase 
ex Sony, eBay, ACM, iyzico 
founder & co-organizer of SCTurkey  
Turkish Software Craftsmanship Community

/lemiorhan 
lemiorhanergin.com 
@lemiorhan



Do you push every commit
just a!er you create ?

TORTURING GIT BY PUSH ANTI-PATTERN



ANTIPATTERN DANGER

TORTURING GIT BY PUSH ANTI-PATTERN

Do you push every commit
just a!er you create ?



ANTIPATTERN DANGER

if all you do is commit and immediate push
you lose the opportunity to organize your commits
via reset, rebase, commit with amend safely

and you have to use force push at every time
you organize your commits

TORTURING GIT BY PUSH ANTI-PATTERN



are you brave enough to
jump to any commit ?

BROKEN TIME MACHINE ANTI-PATTERN



are you brave enough to
jump to any commit ?

ANTIPATTERN DANGER

BROKEN TIME MACHINE ANTI-PATTERN

Nope. Usually tests do not pass, the application does 
not work, even the code does not compile in majority 
of commits.



are you brave enough to
jump to any commit ?

BROKEN TIME MACHINE ANTI-PATTERN

Do you want me to 
help you about 
finding the last 

commit that finalizes 
the feature?



do you have
loooooong living

topic branches ?

LONG LIVING BRANCHES ANTI-PATTERN



do you have
loooooong living

topic branches ?

ANTIPATTERN DANGER

LONG LIVING BRANCHES ANTI-PATTERN



LONG LIVING BRANCHES ANTI-PATTERN

do you have
loooooong living

topic branches ?

welcome to
merge hell

LONG LIVING BRANCHES ANTI-PATTERN



cherry-pickdo you use
to prepare releases ?



cherry-pickdo you use
to prepare releases ?

ANTIPATTERN DANGER

CHERRY-PICK OVERDOSE ANTI-PATTERN



master

HEAD

TAG/v13

version 2.0

$ git cherry-pick Every-Single-Commit-We-Want-To-Deploy

CHERRY-PICK OVERDOSE ANTI-PATTERN

FEATURE 12

FEATURE 14

FEATURE 13



the commit graph ?
do you fully understand

LOST IN COMMIT GRAPH ANTI-PATTERN

when you read 



ANTIPATTERN DANGER

LOST IN COMMIT GRAPH ANTI-PATTERN

LOST IN COMMIT GRAPH ANTI-PATTERN

the commit graph ?
do you fully understand

when you read 



LOST IN COMMIT GRAPH ANTI-PATTERN

the commit graph ?
do you fully understand

topic and shared branches, tracking branches, tags, HEADs, merge commits, reverted commits…

LOST IN COMMIT GRAPH ANTI-PATTERN

when you read 



Cure? Commit Early, Commit O!en 
Perfect Later, Publish Once

 PS: There are more than one way to achieve this



Commit Early, Commit O!en 
Perfect Later, Publish Once

 PS: There are more than one way to achieve this



split your big feature into 
mini shippable tasks

HEAD

TOPIC

refactorings 
tasks, like rest endpoints 
red-green-refactor

each task will have a 
branch, not a feature

master

ORIGIN/master

STEP 0
STEP 1

Our very first step is 
defining a strategy to 
keep branches short



commit early 
commit o!en 
no need to compile 
no need for CI 
it’s only for versioning 

do not push

HEAD

TOPIC

master

ORIGIN/master

STEP 1
STEP 0STEP 2



$ git fetch origin master:master

HEAD

TOPIC

Sync source branch 
with one simple command

master

ORIGIN/master

STEP 2
STEP 1



$ git fetch origin master:master

HEAD

TOPIC

Sync source branch 
with one simple command

master

ORIGIN/master

STEP 2
STEP 3



$ git merge master

HEAD

TOPIC

Get incoming change sets 
from source to topic 
branch via merge

master

ORIGIN/master

STEP 3
STEP 2



$ git merge master

HEAD

TOPIC

Get incoming change sets 
from source to topic 
branch via merge

master

ORIGIN/master

STEP 3



$ git merge master

Get incoming change sets 
from source to topic 
branch via merge

master

ORIGIN/master

HEAD

TOPIC

REGULARLY

STEP 3



$ git merge master

Get incoming change sets 
from source to topic 
branch via merge

master

ORIGIN/master

HEAD

TOPIC

REGULARLY

STEP 3
STEP 4



master

ORIGIN/master

HEAD

TOPIC

merge back to source 
by squashing all commits 
in topic branch
$ git checkout master 
$ git merge --squash topicSTEP 4

STEP 5



master

ORIGIN/master

HEAD

TOPIC

Delete the topic branch
$ git branch -D topicSTEP 5

STEP 4



master

ORIGIN/master

HEAD

Delete the topic branch
$ git branch -D topic

Now you can push

STEP 5



master

ORIGIN/master

HEAD

Delete the topic branch
$ git branch -D topic

Now you can pushSTEP 5



Continuous Integration 
validates master branch 
continuously

Pull requests can be 
used to review code 
and to validate before 
merging back to master

Scrum tasks are 
mapped to commits, 
not stories

Github Flow can be 
used to govern overall

Feature flags should be 
used whenever possible

Commit early & o!en 
perfect later, publish 
once philosophy

Deliver frequently 
be prepared to send 
every single commit

Deleting branches a!er 
merge will make your 
commit graph readableTRUNK-BASED 

DEVELOPMENT
let's make git king again



BUTTON ADDICT ANTI-PATTERN

Git commands? 
is it hard to learn



use terminal
GUIs are prison balls of developers

it’s ok to use GUIs while checking diffs, 
resolving conflicts and viewing commit graph

BUTTON ADDICT ANTI-PATTERN

ANTIPATTERN DANGER



does each of your commit have

or you commit anything you have changed
one special purpose?



stop adding

prevent commits from being big ball of muds
every change

BIG BALL OF MUD ANTI-PATTERN

ANTIPATTERN DANGER

or you commit anything you have changed



BIG BALL OF MUD ANTI-PATTERN

stop adding

prevent commits from being big ball of muds
every change

local change sets at JetBrains IDEs 

BIG BALL OF MUD ANTI-PATTERN



stop adding every change
partial add : git add -p



AMBIGIOUS COMMIT MESSAGES ANTI-PATTERN

commit messages?
do you really understand

what’s wri!en in



# WHAT 
# <issue id> (this commit will...) <subject> 

# WHY and HOW 
# Explain why this change is being made 

# RELATED 
# Provide links or keys to any relevant issues or other resources 

# REMEMBER 
# use lower case in the subject line 
# start with a verb in imperative tone in the subject line 
# do not end the subject line with a period 
# separate subject from body with a blank line 
# use the body to explain what and why vs. how 
# can use multiple lines with "-" for bullet points in body

$ git config --global commit.template ~/.git-commit-template.txt

$ git config --global commit.cleanup strip

use git commit 
templates to 
create be!er 
commit messages

messages 
are

commit

documents!

ANTIPATTERN DANGER

AMBIGIOUS COMMIT MESSAGES ANTI-PATTERN



git rebase 

git push --force

A

B

C

D

git merge 

git pull

Which of the following commands can cause 
duplicate commits in the commit graph?



ANTIPATTERN DANGER

Which of the following commands can cause 
duplicate commits in the commit graph?

git rebase 

git push --force

A

B

C

D

git merge 

git pull

DUPLICATE COMMITS ANTI-PATTERN



UPSTREAM
LOCAL

master

c1 c2 c3 c4 c7

c5 c6c5 c6

FIX

HEAD

master

c1 c2 c3 c4 c7

c5 c6c5 c6

FIX

REBASE & FORCE PUSH
$ git rebase master 
$ git push -f



UPSTREAM
LOCAL

master

c1 c2 c3 c4 c7

c5 c6c5’ c6’

FIX

HEAD

master

c1 c2 c3 c4 c7

c5 c6c5 c6

FIX

REBASE & FORCE PUSH
$ git rebase master 
$ git push -f



UPSTREAM
LOCAL

master

c1 c2 c3 c4 c7

c5 c6c5’ c6’

FIX

HEAD

master

c1 c2 c3 c4 c7

c5 c6c5’ c6’

FIX

REBASE & FORCE PUSH
$ git rebase master 
$ git push -f



UPSTREAM
LOCAL

master

c1 c2 c3 c4 c7

c5 c6c5 c6

FIX

HEAD

master

c1 c2 c3 c4 c7

c5 c6c5’ c6’

FIX

PULL A FORCE-PUSHED BRANCH
$ git pull



UPSTREAM
LOCAL

master

c1 c2 c3 c4 c7

c5 c6c5 c6

FIX

HEAD

master

c1 c2 c3 c4 c7

c5 c6c5’ c6’

FIX

c5 c6c5’ c6’

ORIGIN/FIX

PULL A FORCE-PUSHED BRANCH
$ git pull



UPSTREAM
LOCAL

c1 c2 c3 c4 c7

c5 c6c5 c6

master

c1 c2 c3 c4 c7

c5 c6c5’ c6’

FIX

c5 c6c5’ c6’

c8

master

FIX

HEAD

ORIGIN/FIX

PULL A FORCE-PUSHED BRANCH
$ git pull



UPSTREAM
LOCAL

master

c1 c2 c3 c4 c7

c5 c6c5 c6

FIX

HEAD

master

c1 c2 c3 c4 c7

c5 c6c5’ c6’

FIX

PULL WITH REBASE
$ git pull --rebase



UPSTREAM
LOCAL

master

c1 c2 c3 c4 c7

c5 c6c5’ c6’

FIX

HEAD

master

c1 c2 c3 c4 c7

c5 c6c5’ c6’

FIX

PULL WITH REBASE
$ git pull --rebase



1. TORTURING GIT BY PUSH 

2. BROKEN TIME MACHINE 

3. LONG LIVING BRANCHES 

4. TOO LATE TO VALIDATE 

5. CHERRY-PICK OVERDOSE 

6. LOST IN COMMIT GRAPH 

7. BUTTON ADDICT 

8. TRASH HOUSE 

9. BIG BALL OF MUD 

10. AMBIGIOUS COMMIT MESSAGES 

11. ZOMBIE REBASE 

12. CODE LOSING SYNDROME 

13. MESS UP WITH THE ROLLBACK 

14. CENTRALIZED GIT 

15. MERGE FANATIC

16. BRANCH CEMETERY 

17. UNCONTROLLED POWER 

18. WEB OF REPOSITORIES 

19. ORACLE SYNDROME 

20. WAITING FOR HACKERS 

21. EVIL MERGE 

22. BRANCH OVERDOSE 

23. CHUCKY THE COMMAND 

24. NO HERO TO SAVE LIVES 

25. DUPLICATE COMMITS 

26. BIG FAT COMMIT 

27. CONFLICT-FOBIA 

28. MERGE HELL 

29. F*UCK UP WITH FORCE PUSH 

30. LIVING AT DETACHED HEAD STATE



RECAP

what was really
happened at that time?

LET’S

LIVING AT DETACHED HEAD STATE ANTI-PATTERN



master

TAG/v1.1

login

HEAD

DETACHED HEAD STATE

$ git checkout tags/v1.1 
Note: checking out 'cecd95914'. 

You are in 'detached HEAD' state. You can look around, make experimental 
changes and commit them, and you can discard any commits you make in this 
state without impacting any branches by performing another checkout.

ANTIPATTERN DANGER



master

TAG/v1.1

login

HEAD

my poor friend  
worked for  
3 long days



master

TAG/v1.1

login

HEAD

$ git checkout master

when he moved to 
another branch, all 
commits were gone



master

TAG/v1.1

login

$ git reflog

aa67e3a2c HEAD@{0}: rebase finished: returning to refs/heads/fix/java-sql-Date-violates-LSR 
aa67e3a2c HEAD@{1}: rebase: fixes UnsupportedOperationException while calling toIstant() method of java.sql.Date 
a45f3c4e5 HEAD@{2}: rebase: checkout develop 
630ddad6e HEAD@{3}: checkout: moving from develop to fix/java-sql-Date-violates-LSR 
b26cf7a1a HEAD@{4}: rebase: checkout develop 
630ddad6e HEAD@{5}: checkout: moving from develop to fix/java-sql-Date-violates-LSR 
b26cf7a1a HEAD@{6}: pull: Fast-forward 
8b59f8f50 HEAD@{7}: checkout: moving from fix/java-sql-Date-violates-LSR to develop 
630ddad6e HEAD@{8}: rebase: updating HEAD

HEAD



$ git reflog

630ddad6e

the one we are 

searching for

master

TAG/v1.1

login

aa67e3a2c HEAD@{0}: rebase finished: returning to refs/heads/fix/java-sql-Date-violates-LSR 
aa67e3a2c HEAD@{1}: rebase: fixes UnsupportedOperationException while calling toIstant() method of java.sql.Date 
a45f3c4e5 HEAD@{2}: rebase: checkout develop 
630ddad6e HEAD@{3}: checkout: moving from develop to fix/java-sql-Date-violates-LSR 
b26cf7a1a HEAD@{4}: rebase: checkout develop 
630ddad6e HEAD@{5}: checkout: moving from develop to fix/java-sql-Date-violates-LSR 
b26cf7a1a HEAD@{6}: pull: Fast-forward 
8b59f8f50 HEAD@{7}: checkout: moving from fix/java-sql-Date-violates-LSR to develop 
630ddad6e HEAD@{8}: rebase: updating HEAD

HEAD



master

typofix

TAG/v1.1

login

$ git branch typofix 630ddad6e

HEAD



master

typofix

TAG/v1.1

login

$ git branch typofix 630ddad6e

KEEP CALM, NOTHING WILL BE LOST

LEMi ORHAN ERGiN

HEAD



LEMi ORHAN ERGiN
agile software craftsman  
co-founder @ craftbase

/lemiorhan 
lemiorhanergin.com 
@lemiorhan

ANTIPATTERN DANGER

thank you all!
Feedback: bit.ly/lemiorhan


