
ARCHITECTURE 
EVOLUTION
FROM	AMORPHOUS	MONOLITH	
APPLICATION	TO	A	MODULAR,	CLOUD	
READY	PLATFORM	
Coralia	Popa	–	April	2020	



Agenda

•  The	monolith	
•  Layered	architecture	
• ApplicaFons	segregaFon		
•  Service	based	modular	architecture		
•  Switch	to	dual	deployment:	on	premise	and	cloud	
•  Final	thoughts	



The monolith 
in numbers

•  5	years	ago	
•  15	years	old	applicaFon	at	that	Fme	
•  2	years	release	cycle	
•  100+	non	collocated	engineers	
•  3	sources	of	complexity:	integraFon	with	analyFcal	
instruments,	regulatory	compliance,	specific	data	
processing	algorithms		

	
•  2	types	of	deployment:	workstaFon,	network	
•  3	Fer	architecture:	database,	business	logic	and	
presentaFon	
•  3	paths	leading	to	monolith	:	code	management,	
deployment,	runFme	
•  50+	verFcal	slice	components	



The monolith as a diagram



The monolith as in a list of problems

EXTREMELY	LOW	SPEED	
OF	FEATURE	DELIVERY	

BIG	RISK	OF	
REGRESSION	DURING	

MAINTENANCE	

REDUCED	OPPORTUNITY	
TO	CHANGE	

TECHNOLOGIES	

PERFORMANCE	NEVER	
ALLOWED	SCALING	TO	

THE	NEEDED	
PARAMETERS	

INDUSTRY	TRENDS	
INCOMPATIBILITY	



The turning 
point



Decision point

Incremental	evolu@on	through	
refactoring	or	Big	Bang	rewrite?	

•  Improved	componenFzaFon	
through	refactoring	
•  Break	the	“code”	monolith	by	layered	
architecture	for	business	logic	

•  Gradual	replacement	with	rewrite	

	 		



Layered architecture



Layered architecture - Believes and hopes
• bo]om	layers	can	be	
stabilized	
• be]er	understanding	of	
change	impact	
• simpler	control	of	
dependencies	
• be]er	testability	of	the	
business	logic	
• enable	the	presentaFon	to	
evolve	at	different	change	
pace	
	
	

	• Core	so^ware	principles	
power	
•  Reuse-release	Equivalence	
•  Common-Reuse	
•  Stable-Dependencies	
•  Acyclic	Dependencies	



First signs of recovery

•  Could	release	twice	with	the	same	version	of	the	bo]om	layers	
•  The	rate	of	changes	on	the	bo]om	layers	on	descendent	trend	
•  Development	of	new	applicaFon	could	be	started	on	top	of	the	new	layers		

•  But…	
•  Demoralized	engineer	teams	given	the	massive	effort	with	not	much	
saFsfacFon	
•  Hard	to	demonstrate	to	the	management	the	outcome	of	investment	

	
	



Next step in evoluHon - Break down the 
“runHme monolith”



Decision point

DRY	versus	LOOSE	COUPLING	dilemma	
•  DramaFc	and	unpopular	decision	to	copy	a	large	amount	of	code	
just	to	step	in	the	right	direcFon	



Benefits •  Almost	impossible	to	add	coupling	between	
applicaFon	apps	

•  DistribuFon	of	the	load	in	different	
processes	helped	in	some	extend	with	
performance	

•  Release	cadence	reduced	to	a	quarter	
already,	the	original	objecFve	was	reached	

But	
•  Started	to	have	issues	keeping	the	instances	
of	the	layers	in	sync	between	apps	



Next step in 
evoluHon - 
Break the 
deployment 
monolith



Autonomous service 
paNern

•  covers	a	domain	funcFonality	
•  loosely-coupled	components	following	
hexagonal	architecture	

•  easy	adopFon	as	is	popular	architecture	
•  wide	set	of	tesFng	opFons	
•  no	state	
•  clear	rules	for	governance		
•  running	in	its	own	process	
	



Decision point

•  Custom	Code	or	Third	party	so^ware	?	
Should	we	welcome	third	party	
so^ware?	

•  Third	party	dependencies	can	be	
controlled	as	well	

•  Standards	are	important	
•  The	core	business	domain	is	what	we	are	
good	at	

•  Everything	else	is	someone	else’s	
experFse	area	

•  There	is	a	library	or	a	tool	for	everything	
•  Speed	up	development	
	



Decision point

• Are	we	ready	to	be	a	SaaS	company?	Should	we	take	a	“cloud	first”	
approach	for	new	development?	

•  it	was	a	tough	business	decision	made	with	confidence	that	the	
so^ware	team	will	be	able	to	deliver	
• paradigm	shi^	of	the	organizaFon,	as	it	applies	to	a	larger	scope	than	
just	this	product	development	



Next step in evoluHon – Cloud & On premise

	

-  “dual”	applicaFons	
-  	2	Plaform	implementaFons:	Cloud	and	“On	premise”	



Current challenges
•  Security	
•  Complexity	of	tools	like	Kubernetes	

•  Grow	skills	inside	development	teams	
•  Regulatory	compliance	seems	a	topic	in	early	ages	in	cloud	

•  ConnecFvity	with	the	analyFcal	instruments	in	the	lab	

This	is	the	path	for	today,	and	new	learning		will	come…	



Summary

2016	
• Rearchitecture	
decision	

2017	
•  Layers	creaFon	

2018	
• ApplicaFon	
segregaFon	

• Rewrite	start	

2019	
•  Plaform	&	
applicaFons	

• Quarterly	
release	

2020	
• Cloud	
•  Scalability	



Personal retrospecHve

The	experience	really	helped	me	
to	grow	as	so^ware	architect.	

Decisions	could	save	or	add	
months	of	work	on	development	

teams.	

SaFsfacFon	is	huge	when	you	see	
that	what	you	designed	is	actually	

working.	



QuesHons?


