ARCHITECTURE
EVOLUTION

FROM AMORPHOUS MONOLITH
APPLICATION TO A MODULAR, CLOUD

READY PLATFORM
Coralia Popa — April 2020

Agenda

* The monolith

* Layered architecture

* Applications segregation

* Service based modular architecture

e Switch to dual deployment: on premise and cloud

* Final thoughts

5 years ago

15 years old application at that time

2 years release cycle

100+ non collocated engineers

3 sources of complexity: integration with analytical
instruments, regulatory compliance, specific data
processing algorithms

The monolith

in numbers

2 types of deployment: workstation, network

3 tier architecture: database, business logic and
presentation '

* 3 paths leading to monolith : code management,
deployment, runtime ,

e 50+ vertical slice components

> 4

The monolith as a diagram

................................

Presentation
WPF desktop

App. server
WCF services

.................................

Component

Component

Component

Component

Component

The monolith as in a list of problems

@ O

EXTREMELY LOW SPEED BIG RISK OF REDUCED OPPORTUNITY PERFORMANCE NEVER INDUSTRY TRENDS
OF FEATURE DELIVERY REGRESSION DURING TO CHANGE ALLOWED SCALING TO INCOMPATIBILITY
MAINTENANCE TECHNOLOGIES THE NEEDED

PARAMETERS

The turning
poInt

Decision point

Incremental evolution through
refactoring or Big Bang rewrite?

* Improved componentization
through refactoring

* Break the “code” monolith by layered
architecture for business logic

* Gradual replacement with rewrite

Layered architecture

...

Presentation

WPF desktop Client Client Client Client
e [e [, S Smm—— e —
Loaqic Loqic | Logic | Loqi
Component Component Component Component

....................................

Application server :
WCF services Base Application Framework Business Logic DB 0B

: Oracle
Base Framework Business Logic DB ﬁ

Layered architecture - Believes and hopes

C * bottom layers can be
* Core software principles stabilized

power * better understanding of
change impact

* simpler control of
dependencies

* better testability of the

e Reuse-release Equivalence
* Common-Reuse
 Stable-Dependencies

* Acyclic Dependencies business logic
o * enable the presentation to
s : ;‘ e n‘ evolve at different change
Cor:p(lient Cor%]polﬁent Cor:lc;;ccl)lrfent Corl;:;czﬁent __________________________________ p a c e

First signs of recovery

Could release twice with the same version of the bottom layers

The rate of changes on the bottom layers on descendent trend

Development of new application could be started on top of the new layers

* But...

 Demoralized engineer teams given the massive effort with not much
satisfaction

* Hard to demonstrate to the management the outcome of investment

Next step in evo

“runtime monolith”

ution - Break down the

CAmX = — || — — | | — —— | | webappW | | —— | | —— [l ———
Ptpgsentation Client Client Client = Client Client Client
oo x [Business” “Business | [...[T Business T Business | |...| [Business] | | T Business
pp X . . . h y :
App.server Logic Loaic Loagic Logic Logic Logic

' Component Component Component Component Component Component
Base_
Base Application Framework Business Logic - | Application Business Logic |Base Application Framework
i |_LEramework
. . Base - -
Base Framework Business Logic B Business Logic Base Framework
e

App y - Presentation
WPF desktop

APPY - App. server
WCF services

Decision point

DRY versus LOOSE COUPLING dilemma

* Dramatic and unpopular decision to copy a large amount of code
just to step in the right direction

..

. App X : | WebAppW . App y - Presentation
. Presentation A B Client Copy Copy Client WPF desktop
1T Business || | [TBusness 1| appv Ann commr |
i App X : P - . APPY -App. server
| Logic B 1 of A Of B Logic - 5
5 App.server Component T WCF services 5
» Base | .
Base Application Framework Business Logic . i | Application | i ‘|| Business Logic |Base Application Framework

. | |LEramework |:

- Base P
. | Framework |:

Base Framework Business Logic Business Logic Base Framework

...

. * Almost impossible to add coupling between
BEﬂeﬁtS application apps

 Distribution of the load in different
processes helped in some extend with
performance

* Release cadence reduced to a quarter
already, the original objective was reached

But

e Started to have issues keeping the instances
of the layers in sync between apps

Applications

: , _ Appy- |
Client Client Client Presentation

Business ...| [Business Business
Loaic Logic Logic

et Ao 2 et Ao W Component Component Component - N eXt Ste p | n
Business Logic Base Framework B re a k t h e

Business Logic |Base Application Framework

:l lllllllllllllllllll b e LLLLELLLLLLLLE S
S < & (A
:s o) > CA
R » ~ .
~ (A > -
. N “
- N “
% s 2 .
- > ~
- N e
- > ~
A ~ v
S S & comwm IlIOIIO It
- S L ameemmsaa,,
> < - -~
> ~
> N
> ~
- N

7, N
% &

% $ | :
% - i~)
” » @ peee—— g s TS sasmmm L
¢/ - L
Z, > S~ IIIIICC

Z F | o |l = & S~ lITIIIIIC-
% s BF s "
7, - -, >
A - A >
Q00nmmms R R AR ARt Raaet) DB
& - -
R K, A
Q > 2
R BAF F
-
-
-
-
-
-
-
-

Autonomous service
pattern

e covers a domain functionality

* loosely-coupled components following
hexagonal architecture

* easy adoption as is popular architecture
* wide set of testing options

* no state

 clear rules for governance

* running in its own process

Primary application § Secondary
adapters i infrastructure adapters

Application

: DB
service

] [

Business
Logic/ Domain

Rabbit MQ
AS x

Autonomous Service pattern

Decision point
®-°° BRaooIt

e Custom Code or Third party software ?

Should we welcome third party ’
software? —gy
Consul
* Third party dependencies can be
controlled as well
e Standards are important @
* The core business domain is what we are
good at
* Everything else is someone else’s b‘.’OPENAPI ldent l ty
expertise area INITIATIVE

* There s a library or a tool for everything
* Speed up development

Connect

Decision point

* Are we ready to be a SaaS company? Should we take a “cloud first”
approach for new development?

* it was a tough business decision made with confidence that the
software team will be able to deliver

e paradigm shift of the organization, as it applies to a larger scope than
just this product development

Next step in evolution — Cloud & On premise

“dual” applications
2 Platform implementations: Cloud and “On premise”

Web App Z

Web App W

....................

nnnnnnnnnnnnnnnnnnn

Applications Applications

Web App.. Web App Z Web App W Web App..

"On prem” Q

@ Platform

A .. n Cloud”
5 et {7 Platform

|||||||||||||||||||||||||||||||||||||

...............

Current challenges

Security

Complexity of tools like Kubernetes

Grow skills inside development teams

Regulatory compliance seems a topic in early ages in cloud

Connectivity with the analytical instruments in the lab

2016

e Rearchitecture
decision

2017

e Layers creation

Summary

2018

e Application
segregation
e Rewrite start

2019

e Platform &
applications

e Quarterly
release

2020

e Cloud
e Scalability

OO Personal retrospective

The experience really helped me Decisions could save or add Satisfaction is huge when you see
to grow as software architect. months of work on development that what you designed is actually
teams. working.

