.

A »
._ Yy of
Design Principles For Microservices
2 - <
'0 ) S .
"'/




Lar

* flimoat 20 years experience

« Polyglot programmer, trainer,
and coach at Mozaic ‘Workas

+ fluthor
= Software Crafter

« Speaker and facilitator around
curope

https://mozaicworks.com



Recently, YouTuber

THINK. DESIGN. WORK SMART.

O Think. Design. Work Smart.

HOME

Mozaic Works Channel

Think. Design. Work smart.

@ CppEurope

Uploads | 2

. | TAKE. Unconference

GUALLENCES

%0/ Adrian Bolboaca
CHALLENGES CHATTENGES
() o . . i A e
E.? ! o . e

m S % Remate Work
vk

y ¢ 2 e

et P 1:00:03 -

Peter Hilton - Advice for

-4 P
in Agile M Re L
T 1:12:40 PP - - a
Elizabeth Morrow & Augustin
Technical Documentation

BE

=7 £ 44:57
Joe Yoder - Design Patterns,
Popa - C++ cross-platform...

Remote Work in Agile Joe Yoder - Excerpt: Big Ball
Architecture and the PLoP._.. : of Mud with Alex Bolboaca

https://mozaicworks.com



L Why was OOP necessary?

* dome simulations are
based on mathy

* ‘Others require measaging

pioneer of personal computing

https://mozaicworks.com



Even weirder connections

= “Cuery object should have
an URT

* O0P meant “messaging,
local retention and
protection and hiding of
atate-process, and extreme
late-binding of all things™

https://mozaicworks.com



The similarity is uncanny

Photo by Holger Link on Unsplash

https://mozaicworks.com


https://unsplash.com/@photoholgic?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/similarity?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

£ So, design principles

< UNIX design principles
* Qow coupling, high cohesion
= S01ID Principles

https://mozaicworks.com



T UNIX Design Principles

* Rule of Modularity: ‘Write simple * Rule of Parsimony: Write a big
parts connected by clean interfaces. ~ Program cnly when it s clear by

demorutration that nothing else will
= ‘Rule of Compoaition: Design o ’
p:oqrmtobeoonnectedtooﬂwr - Rule of Repr o o
programa. knowledge into data 8o program logic
* Rule of Separation: Separate can be stupid and robuat.
poticy from mechanism; separale . fule of Extensibility: Design for the
interfaces from engines. future, because it will be here sooner

http://www.catb.org/esr/writings/taoup/html/ch01s06.html than you think.

https://mozaicworks.com



T UNIX Design Principles

“This is the Unix philosophy:
Write programs that do one thing and do it well.
Write programs to work together.
Write programs to handle text streams,
because that Iis a universal interface.”

https://mozaicworks.com



The similarity is uncanny

n
n
L
n
L
x
n
»
L]

A
A
-.-
B
(N
.!:
N
A
AN

Photo by Holger Link on Unsplash

https://mozaicworks.com


https://unsplash.com/@photoholgic?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/similarity?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

& Perhaps old principles apply

* Microaervices are a new iteration of older ideas:
— modularity
~ managing compleuily
— parallel development

* ‘But microservices moved at a higher level

https://mozaicworks.com



& Encapsulation

=l language mechanism for
reatricting direct access to aome
I language construct that
QL facilitates the bundling of data
with the methodas (or other
functicrw) operating on that
data.

https://mozaicworks.com



Encapsulation for Microservices

= Cach microservice with its own database
* Nobody else can access a microservice database
* Currently hidden under a kind of web AP

https://mozaicworks.com



L Low Coupling

* Coupling = the degree of
interdependence between
software modules

* Qow coupling in softiware
= reduced coupling surface

https://mozaicworks.com



Low coupling for microservices?
* Yack of dependencies between the components
« Yack of knowledge of ancther microservice
* Indirection through an event bus

https://mozaicworks.com



High Cohesion

= (Cohesion = “the degree to
which the elements inaide a
module belong together”

https://mozaicworks.com



gt High cohesion for microservices?

< dmall
* ‘Interface as small as poasible, but not smaller

https://mozaicworks.com



Single Responsibility Principle

* “every module or class should have resporuibility over a
single part of the functionality provided by the aoftware,
and that reapornuaibility should be entirely encapsulated by
the class, module or function”

https://mozaicworks.com



£ Open Closed Principle

= “software entities (classes, modules, functions, etc.) should
be open for extension, but closed for modification”

* that 1, such an entity can allow s behawiowr to be
extended without modifying its source code.

https://mozaicworks.com



L So, applying design principles

* Qow coupling, high cohesion, SRP, 18P, OCP — small
microdervices, with a single goal

= Cneapsulation, high cohesion, ‘OCP — own database

* Qow coupling — communicate through events

https://mozaicworks.com



& What about LSP?

< 'S b a subtype of T, then cbjects of type T may be
replaced with objects of type S (i.e. an cbject of type T may
be subatituted with any object of a subtype ) without
altering any of the deairable properties of the program

https://mozaicworks.com



Modularity

https://mozaicworks.com



£ Modularity

“the degree to which a system's components
may be separated and recombined, often with
the benefit of flexibility and variety in use”

https://mozaicworks.com



& Replaceable Modules?

« 15P s about replaceability in classes
* But classes are classificatiors of objects

* “Classes” of microaervices need to share the 1Pl and the
contract to be replaceable

https://mozaicworks.com



In an image...

https://mozaicworks.com



Thank you!

https://mozaicworks.com



	Slide 1
	Fundamental Questions
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

