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* flimoat 20 years experience

« Polyglot programmer, trainer,
and coach at Mozaic ‘Workas

+ fluthor
= Software Crafter

« Speaker and facilitator around
curope
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THINK. DESIGN. WORK SMART.

O Think. Design. Work Smart.

HOME

Mozaic Works Channel

Think. Design. Work smart.

@ CppEurope

Uploads | 2

. | TAKE. Unconference

GUALLENCES

%0/ Adrian Bolboaca
CHALLENGES CHATTENGES
() o . . i A e
E.? ! o . e

m S % Remate Work
vk

y ¢ 2 e

et P 1:00:03 -

Peter Hilton - Advice for

-4 P
in Agile M Re L
T 1:12:40 PP - - a
Elizabeth Morrow & Augustin
Technical Documentation

BE

=7 £ 44:57
Joe Yoder - Design Patterns,
Popa - C++ cross-platform...

Remote Work in Agile Joe Yoder - Excerpt: Big Ball
Architecture and the PLoP._.. : of Mud with Alex Bolboaca

https://mozaicworks.com



L Why was OOP necessary?

* dome simulations are
based on mathy

* ‘Others require measaging

pioneer of personal computing
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Even weirder connections

= “Cuery object should have
an URT

* O0P meant “messaging,
local retention and
protection and hiding of
atate-process, and extreme
late-binding of all things™
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The similarity is uncanny
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£ So, design principles

< UNIX design principles
* Qow coupling, high cohesion
= S01ID Principles
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T UNIX Design Principles

* Rule of Modularity: ‘Write simple * Rule of Parsimony: Write a big
parts connected by clean interfaces. ~ Program cnly when it s clear by

demorutration that nothing else will
= ‘Rule of Compoaition: Design o ’
p:oqrmtobeoonnectedtooﬂwr - Rule of Repr o o
programa. knowledge into data 8o program logic
* Rule of Separation: Separate can be stupid and robuat.
poticy from mechanism; separale . fule of Extensibility: Design for the
interfaces from engines. future, because it will be here sooner

http://www.catb.org/esr/writings/taoup/html/ch01s06.html than you think.
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T UNIX Design Principles

“This is the Unix philosophy:
Write programs that do one thing and do it well.
Write programs to work together.
Write programs to handle text streams,
because that Iis a universal interface.”
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The similarity is uncanny
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& Perhaps old principles apply

* Microaervices are a new iteration of older ideas:
— modularity
~ managing compleuily
— parallel development

* ‘But microservices moved at a higher level
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& Encapsulation

=l language mechanism for
reatricting direct access to aome
I language construct that
QL facilitates the bundling of data
with the methodas (or other
functicrw) operating on that
data.
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Encapsulation for Microservices

= Cach microservice with its own database
* Nobody else can access a microservice database
* Currently hidden under a kind of web AP
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L Low Coupling

* Coupling = the degree of
interdependence between
software modules

* Qow coupling in softiware
= reduced coupling surface
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Low coupling for microservices?
* Yack of dependencies between the components
« Yack of knowledge of ancther microservice
* Indirection through an event bus
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High Cohesion

= (Cohesion = “the degree to
which the elements inaide a
module belong together”
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gt High cohesion for microservices?

< dmall
* ‘Interface as small as poasible, but not smaller
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Single Responsibility Principle

* “every module or class should have resporuibility over a
single part of the functionality provided by the aoftware,
and that reapornuaibility should be entirely encapsulated by
the class, module or function”

https://mozaicworks.com



£ Open Closed Principle

= “software entities (classes, modules, functions, etc.) should
be open for extension, but closed for modification”

* that 1, such an entity can allow s behawiowr to be
extended without modifying its source code.
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L So, applying design principles

* Qow coupling, high cohesion, SRP, 18P, OCP — small
microdervices, with a single goal

= Cneapsulation, high cohesion, ‘OCP — own database

* Qow coupling — communicate through events
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& What about LSP?

< 'S b a subtype of T, then cbjects of type T may be
replaced with objects of type S (i.e. an cbject of type T may
be subatituted with any object of a subtype ) without
altering any of the deairable properties of the program
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Modularity
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£ Modularity

“the degree to which a system's components
may be separated and recombined, often with
the benefit of flexibility and variety in use”
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& Replaceable Modules?

« 15P s about replaceability in classes
* But classes are classificatiors of objects

* “Classes” of microaervices need to share the 1Pl and the
contract to be replaceable
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In an image...
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Thank you!
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