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Me?
✳ Almost 20 years experience
✳ Polyglot programmer, trainer, 

and coach at Mozaic Works
✳ Author
✳ Software Crafter
✳ Speaker and facilitator around 

Europe
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Recently, YouTuber
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Why was OOP necessary?
✳ Structuring the code for 

simulations
✳ Some simulations are 

based on maths
✳ Others require messaging

Allen Wirfs-Brock,
pioneer of personal computing
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Even weirder connections
✳ “Every object should have 

an URL”
✳ OOP meant “messaging, 

local retention and 
protection and hiding of 
state-process, and extreme 
late-binding of all things”

Alan Kay
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The similarity is uncanny

Photo by Holger Link on Unsplash

https://unsplash.com/@photoholgic?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/similarity?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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So, design principles
✳ UNIX design principles
✳ Low coupling, high cohesion
✳ SOLID Principles
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UNIX Design Principles
✳ Rule of Modularity: Write simple 

parts connected by clean interfaces.
✳ Rule of Composition: Design 

programs to be connected to other 
programs.

✳ Rule of Separation: Separate 
policy from mechanism; separate 
interfaces from engines.

✳ Rule of Parsimony: Write a big 
program only when it is clear by 
demonstration that nothing else will 
do.

✳ Rule of Representation: Fold 
knowledge into data so program logic 
can be stupid and robust.

✳ Rule of Extensibility: Design for the 
future, because it will be here sooner 
than you think.http://www.catb.org/esr/writings/taoup/html/ch01s06.html
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UNIX Design Principles

“This is the Unix philosophy: 
Write programs that do one thing and do it well. 

Write programs to work together. 
Write programs to handle text streams, 
because that is a universal interface.”
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The similarity is uncanny

Photo by Holger Link on Unsplash

https://unsplash.com/@photoholgic?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/similarity?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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Perhaps old principles apply
✳ Microservices are a new iteration of older ideas:

– modularity
– managing complexity
– parallel development

✳ But microservices  moved at a higher level
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Encapsulation
✳     A language mechanism for 

restricting direct access to some 
of the object's components.

✳     A language construct that 
facilitates the bundling of data 
with the methods (or other 
functions) operating on that 
data.
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Encapsulation for Microservices
✳ Each microservice with its own database
✳ Nobody else can access a microservice database
✳ Currently hidden under a kind of web API
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Low Coupling
✳ Coupling = the degree of 

interdependence between 
software modules

✳ Low coupling in softtware 
= reduced coupling surface
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Low coupling for microservices?
✳ Lack of dependencies between the components
✳ Lack of knowledge of another microservice
✳ Indirection through an event bus
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High Cohesion
✳ Cohesion = “the degree to 

which the elements inside a 
module belong together”



https://mozaicworks.com

High cohesion for microservices?
✳ Small
✳ Interface as small as possible, but not smaller
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Single Responsibility Principle
✳ “every module or class should have responsibility over a 

single part of the functionality provided by the software, 
and that responsibility should be entirely encapsulated by 
the class, module or function”
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Open Closed Principle
✳ “software entities (classes, modules, functions, etc.) should 

be open for extension, but closed for modification"
✳ that is, such an entity can allow its behaviour to be 

extended without modifying its source code.
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So, applying design principles
✳ Low coupling, high cohesion, SRP, ISP, OCP  Small → Small 

microservices, with a single goal
✳ Encapsulation, high cohesion, OCP  own database→ Small 
✳ Low coupling  communicate through events→ Small 
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What about LSP?
✳  if S is a subtype of T, then objects of type T may be 

replaced with objects of type S (i.e. an object of type T may 
be substituted with any object of a subtype S) without 
altering any of the desirable properties of the program
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Modularity
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Modularity

“the degree to which a system's components 
may be separated and recombined, often with 

the benefit of flexibility and variety in use”



https://mozaicworks.com

Replaceable Modules?
✳ LSP is about replaceability in classes
✳ But classes are classifications of objects
✳ “Classes” of microservices need to share the API and the 

contract to be replaceable
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In an image...
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Thank you!
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