
Design Principles For Microservices

https://mozaicworks.com

Me?
✳ Almost 20 years experience
✳ Polyglot programmer, trainer,

and coach at Mozaic Works
✳ Author
✳ Software Crafter
✳ Speaker and facilitator around

Europe

https://mozaicworks.com

Recently, YouTuber

https://mozaicworks.com

Why was OOP necessary?
✳ Structuring the code for

simulations
✳ Some simulations are

based on maths
✳ Others require messaging

Allen Wirfs-Brock,
pioneer of personal computing

https://mozaicworks.com

Even weirder connections
✳ “Every object should have

an URL”
✳ OOP meant “messaging,

local retention and
protection and hiding of
state-process, and extreme
late-binding of all things”

Alan Kay

https://mozaicworks.com

The similarity is uncanny

Photo by Holger Link on Unsplash

https://unsplash.com/@photoholgic?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/similarity?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

https://mozaicworks.com

So, design principles
✳ UNIX design principles
✳ Low coupling, high cohesion
✳ SOLID Principles

https://mozaicworks.com

UNIX Design Principles
✳ Rule of Modularity: Write simple

parts connected by clean interfaces.
✳ Rule of Composition: Design

programs to be connected to other
programs.

✳ Rule of Separation: Separate
policy from mechanism; separate
interfaces from engines.

✳ Rule of Parsimony: Write a big
program only when it is clear by
demonstration that nothing else will
do.

✳ Rule of Representation: Fold
knowledge into data so program logic
can be stupid and robust.

✳ Rule of Extensibility: Design for the
future, because it will be here sooner
than you think.http://www.catb.org/esr/writings/taoup/html/ch01s06.html

https://mozaicworks.com

UNIX Design Principles

“This is the Unix philosophy:
Write programs that do one thing and do it well.

Write programs to work together.
Write programs to handle text streams,
because that is a universal interface.”

https://mozaicworks.com

The similarity is uncanny

Photo by Holger Link on Unsplash

https://unsplash.com/@photoholgic?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/similarity?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

https://mozaicworks.com

Perhaps old principles apply
✳ Microservices are a new iteration of older ideas:

– modularity
– managing complexity
– parallel development

✳ But microservices moved at a higher level

https://mozaicworks.com

Encapsulation
✳ A language mechanism for

restricting direct access to some
of the object's components.

✳ A language construct that
facilitates the bundling of data
with the methods (or other
functions) operating on that
data.

https://mozaicworks.com

Encapsulation for Microservices
✳ Each microservice with its own database
✳ Nobody else can access a microservice database
✳ Currently hidden under a kind of web API

https://mozaicworks.com

Low Coupling
✳ Coupling = the degree of

interdependence between
software modules

✳ Low coupling in softtware
= reduced coupling surface

https://mozaicworks.com

Low coupling for microservices?
✳ Lack of dependencies between the components
✳ Lack of knowledge of another microservice
✳ Indirection through an event bus

https://mozaicworks.com

High Cohesion
✳ Cohesion = “the degree to

which the elements inside a
module belong together”

https://mozaicworks.com

High cohesion for microservices?
✳ Small
✳ Interface as small as possible, but not smaller

https://mozaicworks.com

Single Responsibility Principle
✳ “every module or class should have responsibility over a

single part of the functionality provided by the software,
and that responsibility should be entirely encapsulated by
the class, module or function”

https://mozaicworks.com

Open Closed Principle
✳ “software entities (classes, modules, functions, etc.) should

be open for extension, but closed for modification"
✳ that is, such an entity can allow its behaviour to be

extended without modifying its source code.

https://mozaicworks.com

So, applying design principles
✳ Low coupling, high cohesion, SRP, ISP, OCP Small → Small

microservices, with a single goal
✳ Encapsulation, high cohesion, OCP own database→ Small
✳ Low coupling communicate through events→ Small

https://mozaicworks.com

What about LSP?
✳ if S is a subtype of T, then objects of type T may be

replaced with objects of type S (i.e. an object of type T may
be substituted with any object of a subtype S) without
altering any of the desirable properties of the program

https://mozaicworks.com

Modularity

https://mozaicworks.com

Modularity

“the degree to which a system's components
may be separated and recombined, often with

the benefit of flexibility and variety in use”

https://mozaicworks.com

Replaceable Modules?
✳ LSP is about replaceability in classes
✳ But classes are classifications of objects
✳ “Classes” of microservices need to share the API and the

contract to be replaceable

https://mozaicworks.com

In an image...

https://mozaicworks.com

Thank you!

	Slide 1
	Fundamental Questions
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

