
4/10/2020

1

Fundamental IDEALS and Domain
Driven Design (DDD) for designing
modern service-based systems

Joe Yoder – joe@refactory.com

Twitter: @metayoda

https://refactory.com

Copyright 2020 Joseph Yoder, The Refactory, Inc.

SOLID is for OO design

Single responsibility principle

Open/closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

4/10/2020

2

What if I’m designing services
and microservices?

Microservice style

The microservice style dictates that the deployment unit
should contain only one service or just a few cohesive services

This deployment constraint is the distinguishing factor2

The microservice architectural style is an approach to developing
a single application as a suite of small services, each running in

its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services are built

around business capabilities and independently deployable by
fully automated deployment machinery. 1

1 Lewis, J. & Fowler, M. “Microservices.” 2014
martinfowler.com/articles/microservices.html

2 Merson, P. “Defining Microservices.” SATURN blog, 2015.
insights.sei.cmu.edu/saturn/2015/11/defining-microservices.html

http://martinfowler.com/articles/microservices.html
https://insights.sei.cmu.edu/saturn/2015/11/defining-microservices.html

4/10/2020

3

Interface segregation

Deployability

Event-driven

Availability over consistency

Loose Coupling

Single responsibility

Guiding IDEALS for microservices

Interface Segregation

Interface Segregation Principle
• This principle deals with the disadvantages of “fat” interfaces […]

• The interfaces of the class can be broken up into groups of methods […]

• Each group serves a different set of clients

Robert C. Martin & Micah Martin. Agile Principles, Patterns, and Practices in C#.
Prentice Hall, 2006.

I
D
E
A
L
S

public Person createPerson(
final String lastName,
final String firstName,
final String middleName,
final String salutation,
final String suffix,
final String streetAddress,
final String city,
final String state,
final char gender,
final boolean isEmployed,
final boolean isHomeOwner)

{ // implementation goes here }

4/10/2020

4

Interface Segregation for microservices

Services are often called by different types of clients, such as
• Web applications, mobile apps, other backend services

Traditional SOA prescribed canonical schema:
• All clients should comply to the service contract

Today:
• Each client should see a service contract that best suits its needs

But how?

I know
how… BFFs!

Backend for frontends (BFF)

• Variation of API gateway

• One API gateway for each
type of client (frontend)

• Each API gateway does
routing, transformations, etc.
as needed by each client

• Each frontend team can be
responsible for their API
gateway

4/10/2020

5

Deployability

• Microservices hugely increased the number of deployment units

I
D
E
A
L
S

Good design and implementation
alone don’t warrant success

Automation is Key

4/10/2020

6

Event-Driven

• Synchronous request-response calls are still everywhere

• But today’s scalability and performance requirements pose a
challenge that calls for events processed asynchronously

I
D
E
A
L
S

Event-Driven Architecture (EDA)

EDA is an architecture style in which components
communicate primarily through asynchronous

messages or events

4/10/2020

7

Event-driven example

Availability over consistency

• The CAP theorem gives you two options: availability xor consistency

• We see enormous effort in industry to provide mechanisms to enable
you to choose availability, ergo embrace eventual consistency

• Why? Users won’t put up with lack of availability!

Availability!

I
D
E
A
L
S

Availability or
consistency?

4/10/2020

8

Availability over consistency in practice

• CQRS and Service Data Replication

I
D
E
A
L
S

Loose coupling

• High coupling has dependency between components or services

• These interdependencies and connections can make
the system harder to evolve and maintain

4/10/2020

9

I
D
E
A
L
S

Loose coupling for microservices

• Model around the business domain (DDD)

• Carefully design the contract

• Use wrapper patterns (adapter, façade, decorator, proxy)

• Use EDA, API Gateway, Asynchronous Messaging, Hypermedia, …

Single responsibility

Single Responsibility Principle:
• If a class has more than one responsibility, [they] become coupled […]

• This kind of coupling leads to fragile designs that break in unexpected
ways when changed […]

• [SRP] is one of the simplest of the principles,
but one of the most difficult to get right

I
D
E
A
L
S

+renew()

+expire()

+convert()

+activate()

+inactivate()

-applyDiscount()

+determineFee()

+status

+paymentInfo

+activationDate

+expirationDate

+promotionCode

Subscription

Subscriptions: subscribe, status, promotions, payments

4/10/2020

10

Single responsibility for microservices

If a microservice is packed with responsibilities,
it might bear the pains of the monolith

If its responsibility is too slim
• several microservices might need to interact to fulfill a request

• data changes might be spread across different microservices

Distrubuted
transaction

cadaver!

DDD to the rescue

DDD can help you define the size of your microservice
• Not the LOC size

• The size in terms of functional scope

A well designed
microservice shall

have a single
responsibility

Let’s look at how to Model Microservices with DDD

4/10/2020

11

Interface segregation

Deployability

Event-driven

Availability over consistency

Loose Coupling

Single responsibility

Guiding IDEALS for microservices

Modeling Microservices with DDD

4/10/2020

12

Motivation

How do I model my microservices

What is a good size of a microservices

How do I avoid coupling problems

How do I deal with distributed data and transactions

Domain-Driven Design (DDD)

DDD is an approach to domain modeling created by Eric Evans

DDD is not an approach to microservice design

But DDD can help with some aspects of microservice design

2003 2013 2015

4/10/2020

13

Agile Approaches encourage Domain Experts

Variation with a Shared Mental Model

https://pragprog.com/book/swdddf/domain-modeling-made-functional 2018

https://pragprog.com/book/swdddf/domain-modeling-made-functional

4/10/2020

14

DDD main concepts

Domain
• Core domain

Aggregate
• Entity, value object, aggregate root

Bounded context
• Context map, Anticorruption Layer

Ubiquitous language

Application service, domain service

Repository

Domain event

Domain

Domain is the problem to be solved with software in an organization

It includes the concepts and business rules needed to achieve
the business goals of the organization

Examples of organizations and their domains:
• DHL: shipping parcels

• Supreme Court: judicial cases involving the Constitution or federal law

• Angelo’s Pizza: produce and sell pizza

4/10/2020

15

Core domain

Domain is the generic term

A domain is typically composed of subdomains

A domain can be a
• core domain—is crucial for the success of the organization

• supporting subdomain—models important aspects of the business
that are not core to the business

• generic subdomain—required by the business in an auxiliary fashion

The classification terms are not important;
identifying core domains is important

4/10/2020

16

Domain model

Each domain and subdomain
has its domain model

Driver Service

Violation

Services

Vehicle

Registration

Service

Traffic Ticket Domain

Entity
Entities have an ID and a life cycle, focus is

on behavior, not data (rich object model)

Examples: Driver, Customer, Order, Payment

Value Object
Value objects represent characteristics or values in an entity

Examples: Address, Amount, Distance, Price, Geolocation

4/10/2020

17

@Entity

class TicketType(

var id: Long,

var description: String,

var severity: Severity,

var points: Int

) {

enum class Severity { CITYVIOLATION, CIVILINFRACTION,

TRAFFICMISDEMEANOR }

}

@Embeddable

class LocationVO(

var location: String,

var municipalityId: Long

}

Example of VO using
@Embeddable JPA annotation

Example of Entity using @Entity JPA
annotation (ORM mapping details omitted)

Note that a VO may hold
a reference to an entity

Aggregate

• An aggregate represents a cohesive business
concept, such as Vehicle, Driver, Ticket, …

• An aggregate has one or more entities
with possible value objects

• One entity is the aggregate root

• The typical aggregate has one entity
and a few VOs, but aggregates with
2-3 entities are common

External objects/functions only see the
aggregate through the aggregate root

4/10/2020

18

Aggregate transactional consistency

• An aggregate defines a (transactional) consistency boundary

• It remains transactionally consistent throughout its lifetime

• It is often loaded in its entirety from the database

• If an aggregate is deleted, all of its objects are deleted

A database transaction should
touch only one aggregate

Inter-aggregate references

• Aggregate A may reference aggregate B

• The reference must use the ID of aggregate B

DDD way  Traditional OO way
@Entity

class TrafficTicket(

var id: Long,

var dateTime: Date,

var location: LocationVO,

var vehicleId: Long,

var ticketTypeId: Long

) {

var driverId: Long? = null

var notes: String? = null

}

@Entity

class TrafficTicket(

var id: Long,

var dateTime: Date,

var location: LocationVO,

var vehicle: Vehicle,

var ticketType: TicketType

) {

var driver: Driver? = null

var notes: String? = null

}

4/10/2020

19

Bounded Context

A bounded context (BC) delimits the scope of a domain model

Bounded Context

A bounded context (BC) delimits the scope of a domain model

The scope of a BC can be
• The entire domain model of a subdomain (recommended)

• Domain models of 2+ subdomains (often happens with legacy systems)

• Part of the domain model of a subdomain (when we won’t implement
the other part)

In practice…
• The scope of a BC is often the scope of a traditional application system

• BCs are autonomous and a developer should be able to tell whether a
concept is in or out of a BC

4/10/2020

20

Business
Domain Jargon

Technical
Jargon

Ubiquitous language in a nutshell
• Ubiquitous Language is the term Eric Evans uses in Domain Driven

Design for the practice of building up a common, rigorous language
between developers and domain experts. This language should be
based on the Domain Model used in the software - hence the need
for it to be rigorous, since software doesn't cope well with ambiguity.

Domain experts should object to terms or structures

that are awkward or inadequate to convey domain

understanding; developers should watch for

ambiguity or inconsistency that will trip up design.

-- Eric Evans

Domain Events

A domain event
• is something of interest that has happened to an aggregate
• should be expressed in past tense
• typically represents state change
• should be represented by a class in the domain model
• may be organized in an event class hierarchy

Examples:
• Traffic Ticket Issued
• Traffic Ticket Paid
• Driver Created
• Driver’s License Suspended

4/10/2020

21

What’s the right size of a microservice?

If it’s too large, it might bear the challenges of a monolith

If it’s too small:
• Several microservices might need to interact to fulfill a request

• Data changes might be spread across different microservices

• Distributed transactions might be needed

DDD can help you define the size of your microservice
• Not the LOC size
• The size in terms of functional scope

Before we discuss how we need to
understand what is a microservice

@RestController

@RequestMapping("api")

class TrafficTicketController(val applicationService: TrafficTicketService) {

@PostMapping("/traffic-ticket")

fun createTicket(@RequestBody trafficTicketDto: TrafficTicketDto, response: HttpServletResponse):

ResponseEntity<TrafficTicketDto?> {

val newTrafficTicketDto = applicationService.create(trafficTicketDto)

return ResponseEntity(newTrafficTicketDto, HttpStatus.OK)

}

@PutMapping("/traffic-ticket/{id}")

fun updateTicket(@RequestBody trafficTicketDto: TrafficTicketDto):

ResponseEntity<TrafficTicketDto?> {

// . . .

}

What is a microservice in practice?

• Let’s build an example with a REST (http) backend service

The @RestController typically calls the DDD application service

This service
exposes 2
endpoints

4/10/2020

22

@RestController

@RequestMapping("api")

class VehicleController(val applicationService: VehicleService) {

@PostMapping("/vehicle")

fun createVehicle(@RequestBody vehicleDto: VehicleDto, response: HttpServletResponse):

ResponseEntity<VehicleDto?> {

val newVehicleDto = applicationService.create(vehicleDto)

return ResponseEntity(newVehicleDto, HttpStatus.OK)

}

@GetMapping("/vehicle/plate/{plate}")

fun getVehicleByLicensePlate(. . .)

• TrafficTicketController and VehicleController are both REST services

• But are they microservices?

If both services are part of the same
deployment unit, then it’s one microservice

The deployment unit in this
case is a docker image

4/10/2020

23

Scenarios for microservice
scope and interaction

1. One-aggregate BC, one service, one microservice

2. A few aggregates in the BC, a few services, one microservice

3. Two BCs, two microservices, they interact via events

4. Two BCs, two microservices, they interact via API calls with ACL

5. Two BCs, two microservices, they interact via data replication

For operations handled
entirely within the BC

For operations
that require inter
BC interaction

Notation used in diagrams
showing microservices

4/10/2020

24

DDD and microservice scope (1)

DDD can help define the microservice size

Scenario 1: a data changing operation affects a single aggregate
• One aggregate  one service

• One service  one microservice

DDD and microservice scope (2)

Scenario 2: operation affects a few aggregates within the same BC
• Each aggregate  one service

• A few aggregates  one BC

• One BC  one microservice

No distributed transaction because services run in the same VM

4/10/2020

25

Putting it simply

A single service…

can be packaged as a microservice

But a microservice may contain 2 services…

or 3…

or even more, as long as they’re cohesive

DDD and microservice scope (3)

• Domain-level business logic spanning multiple aggregates
can be placed in a domain service

• The domain service interacts with different entities in the same BC

Suggestion: create a
@DomainService annotation
that is @Transactional

4/10/2020

26

Transactions over multiple BCs

Scenario 3: operation affects data in different BCs
• Each BC  one microservice

• Use domain events for inter microservice communication

Publish-subscribe technologies can be used, such as
• Kafka

• RabbitMQ

• Vert.x

• Akka

• Eventuate Tram

Event-based saga example (1)
Local DB

transaction

4/10/2020

27

Event-based saga example (2)

Event-based interaction – benefits

Maintainability
• Publishers and subscribers are independent and hence loosely coupled

• There’s more flexibility to add functionality by simply adding subscribers or
events

Scalability and throughput
• Publishers are not blocked, and events can be consumed by multiple

subscribers in parallel

Availability and reliability:
• Temporary failures in one service are less likely to affect the others

4/10/2020

28

Event-based interaction – challenges (1)

Maintainability
• The event-based programming model is more complex:

• Some of the processing happens in parallel and may require synchronization
points

• Correction events, and mechanisms to prevent lost messages may be needed

• Correlation identifiers may be needed

Testability
• Testing and monitoring the overall solution is more difficult

Interoperability and portability
• The event bus may be platform specific and cause vendor lock-in

Event-based interaction – challenges (2)

• Good UX is harder if end user needs to keep track of events

• We traded transactional consistency for eventual consistency

4/10/2020

29

Takeaways

• IDEALS are good design principles for designing microservices

• Domain Driven Design (DDD) can help with defining microservices

• DDD key concepts (for microservice design) are domain, subdomain,
bounded context, aggregate, and entity

• A service (e.g., REST) can have the scope of an aggregate

• Model a microservice around the bounded context

• We can use domain events for inter-microservice (i.e., inter-BC) interaction

Takeaways

Whether you use DDD or not,
or you are creating microservcies or not:
• Model around business capabilities or the domain

• Model the domain by using concepts such as:

• entities,

• aggregates,

• bounded context,

• ubiquitous language

Vehicle & Registration
Service

Driver
Service

Violation
Service

Subdomain:
Veh & Reg

Subdomain:
Driver

Subdomain:
Violation

Traffic Ticket Domain

4/10/2020

30

Interface segregation

Deployability

Event-driven

Availability over consistency

Loose Coupling

Single responsibility

Guiding IDEALS for microservices

Joseph Yoder
https://refactory.com
joe@refactory.com
Twitter @metayoda

Thanks to Paulo Merson

