
NOBODY TOLD ME ABOUT THATNOBODY TOLD ME ABOUT THAT
CHRONICLES ABOUT IMPLEMENTING MICROSERVICECHRONICLES ABOUT IMPLEMENTING MICROSERVICE

ARCHITECTUREARCHITECTURE

Khaled Souf 
twitter: @khaledsouf

1 / 32



ABOUT MEABOUT ME
Developer/Cra�ing So�ware Coach/ DDD Expert/Trainer
Co-organizer of So�ware Cra�ers Montréal meetup
Co-organizer of SOCRATES Canada unconference
more details on : https://ksouf.com

2 / 32

https://ksouf.com/


3 / 32



4 / 32



I remain convinced that it is much
easier to partition an existing,

"brownfield" system than to do so up
front with a new, greenfield system. --

Sam Newman (Author of building
microservices)

5 / 32



If you can’t build a well-structured
monolith, what makes you think you

can build a well-structured set of
microservices? -- Simon Brown (Author

of So�ware Architecture for
Developers)

6 / 32



source microservices.io -- Chris Richardson (Author of
microservices Patterns)

7 / 32



DOMAIN DRIVEN DESIGN TO THE RESCUE DOMAIN DRIVEN DESIGN TO THE RESCUE 
STRATEGIC DESIGN TO BE PRECISESTRATEGIC DESIGN TO BE PRECISE

Extract your Microservice from the monolith based on business capabilities
Create New Feature on new Bounded Context (Bubble Context)
Use some Context Mapping Patterns for communication

8 / 32



ANTI-CORRUPTION LAYER (ACL)ANTI-CORRUPTION LAYER (ACL)

9 / 32



OPEN HOST SERVICE (OHS)OPEN HOST SERVICE (OHS)

10 / 32



More details on: Applied Domain Driven Design On
Legacy Code

11 / 32

https://speakerdeck.com/ksouf/applied-domain-driven-design-on-legacy-code


Don't Make Microservices communicate with each
other (Directly)!!

12 / 32



UNLESS YOU WANT THIS!!!UNLESS YOU WANT THIS!!!

13 / 32



14 / 32



HOW WE DO AVOID IT?HOW WE DO AVOID IT?
Service registry: every instance of service is registered and can be found only by the
registry
Microservices publish messages to the bus to chain actions
Microservices consumes from queues that subscribed to specific event of the messaging
bus
Messages are used for asynchronous commands
Registry is used to find API's (REST for the most) for querying

15 / 32



MICROSERVICE ARCHITECTURE (WITH REGISTRY &MICROSERVICE ARCHITECTURE (WITH REGISTRY &
MESSAGING BUS)MESSAGING BUS)



16 / 32



WHAT ABOUT DATABASES?WHAT ABOUT DATABASES?
Use choreography-based saga pattern (aka eventual consistency in Domain Driven
Design).
A Microservice manage his own data (shared database is Anti-Pattern).
Keep two copies for starting (one in monolith/ one in microservice).

17 / 32



CHOREOGRAPHY-BASED SAGA PATTERNCHOREOGRAPHY-BASED SAGA PATTERN

18 / 32



BACK-END FOR FRONT-END (BFF)BACK-END FOR FRONT-END (BFF)
Don't expose your Microservices directly
Use BFF as view and information aggregator for general purpose or specific customer
(depends on context)
Use a gateway if you're exposing BFF to something external

19 / 32



BFF: GENERAL PURPOSE APIBFF: GENERAL PURPOSE API

source samnewman.io

20 / 32



BFF: SPECIFIC PURPOSE APIBFF: SPECIFIC PURPOSE API

source samnewman.io

21 / 32



USE CONTRACTS TESTING FOR APIUSE CONTRACTS TESTING FOR API
(INSTEAD OF END TO END TESTING)(INSTEAD OF END TO END TESTING)

Let your consumer define the contract (Consumer Driven Contracts Testing)
Use a contract broker to publish/verify your contracts

22 / 32



CONSUMER DRIVEN CONTRACTS TESTINGCONSUMER DRIVEN CONTRACTS TESTING

23 / 32



USE MICRO FRONTENDUSE MICRO FRONTEND

24 / 32



INDUSTRIALIZE YOUR APPLICATIONSINDUSTRIALIZE YOUR APPLICATIONS
Create Template by Type of Project.
Focus only Business Value when creating your Microservice.
Define Template by used language and capabilities.
Your Template should contain also you definition of build & deployment pipelines.

25 / 32



LOGGINGLOGGING
Use Centralized logs solution
Use structured logs
Log your input/output of your Microservice
Use Correlation Id to monitor cross Microservices requests

26 / 32



MONITORINGMONITORING
Implement always a health check for your Microservice
Centralize your metrics in one simple dashboard
Use alerting system when any weird behavior

27 / 32



PROVISIONING/CONFIGURATION MANAGEMENTPROVISIONING/CONFIGURATION MANAGEMENT
Use tools to manage configuration (Ansible, Saltstack, ...).
build a git repository infrastructure as code to automate your provisioning.
Make sure that the only possible modification of infrastructure is by modifying infra as
code.

28 / 32



SECRETS MANAGEMENTSECRETS MANAGEMENT
Separate your Secrets from your configuration in a secrets server (Vault Server)
Use key rotation technique to change keys periodically to prevent that a key is
compromised

29 / 32



WARP-UPWARP-UP
Don't start with microservices
Use Strategic Design of Domain Driven Design and Strangler Pattern to split your
monolith
don't make microservices communicate directly (Service Registry for API Query,
Messaging BUS for Command)
Use Consumer Driven Contracts Technique instead of End to End Testing
Centralize your cutting-edge concern (logging, monitoring, secrets, configuration,
infrastructure)
Automate as much as possible (infrastructure provisioning, config management, secrets
management,build & deployment, ..)

30 / 32



BEFORE FINISHING: I DID NOT INVENTED ALL THESEBEFORE FINISHING: I DID NOT INVENTED ALL THESE
TECHNIQUES!!!TECHNIQUES!!!

Domain Driven Design
Microservices Patterns (The Book)
Twelve Factor
DevOps Practices

31 / 32



THANK YOU FOR ATTENDINGTHANK YOU FOR ATTENDING
Questions ?
twitter: @khaledsouf

32 / 32


